Rigorous derivation of the Kuramoto–Sivashinsky equation from a 2D weakly nonlinear Stefan problem

نویسندگان

  • CLAUDE-MICHEL BRAUNER
  • JOSEPHUS HULSHOF
چکیده

We are interested in a rigorous derivation of the Kuramoto–Sivashinsky (K-S) equation from a free boundary problem. As a paradigm, we consider a two-dimensional Stefan problem in a strip, a simplified version of a solid-liquid interface model. Near the instability threshold, we introduce a small parameter ε and define rescaled variables accordingly. At fixed ε, our method is based on: definition of a suitable linear 1D operator, projection with respect to the longitudinal coordinate only, and the Lyapunov–Schmidt method. As a solvability condition, we derive a self-consistent parabolic equation for the front. We prove that, starting from the same configuration, the latter remains close to the solution of K-S on a fixed time interval, uniformly in ε sufficiently small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigorous Derivation of the Kuramoto-sivashinsky Equation in a 2d Weakly Nonlinear Stefan Problem

In this paper we are interested in a rigorous derivation of the Kuramoto-Sivashinsky equation (K–S) in a Free Boundary Problem. As a paradigm, we consider a two-dimensional Stefan problem in a strip, a simplified version of a solid-liquid interface model. Near the instability threshold, we introduce a small parameter ε and define rescaled variables accordingly. At fixed ε, our method is based o...

متن کامل

Boundary local null-controllability of the Kuramoto-Sivashinsky equation

We prove that the Kuramoto-Sivashinsky equation is locally controllable in 1D and in 2D with one boundary control. Our method consists in combining several general results in order to reduce the nullcontrollability of this nonlinear parabolic equation to the exact controllability of a linear beam or plate system. This improves known results on the controllability of Kuramoto-Sivashinsky equatio...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

A Fully Nonlinear Equation for the Flame Front in a Quasi-steady Combustion Model

We revisit the Near Equidiffusional Flames (NEF) model introduced by Matkowsky and Sivashinsky in 1979 and consider a simplified, quasisteady version of it. This simplification allows, near the planar front, an explicit derivation of the front equation. The latter is a pseudodifferential fully nonlinear parabolic equation of the fourth-order. First, we study the (orbital) stability of the null ...

متن کامل

Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation

In this article, we present an inverse problem for the nonlinear 1-d Kuramoto-Sivashinsky (K-S) equation. More precisely, we study the nonlinear inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability for this inverse problem is our main result a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011